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Abstract

We want assurances that sensitive information will not be disclosed when aggregate data derived
from a database is published. Differential privacy offers a strong statistical guarantee that the effect of
the presence of any individual in a database will be negligible, even when an adversary has auxiliary
knowledge. Much of the prior work in this area consists of proving algorithms to be differentially private
one at a time; we propose to streamline this process with a functional language whose type system
automatically guarantees differential privacy, allowing the programmer to write complex privacy-safe
query programs in a flexible and compositional way.

The key novelty is the way our type system captures function sensitivity, a measure of how much a
function can magnify the distance between similar inputs: well-typed programs not only can’t go wrong,
they can’t go too far on nearby inputs. Moreover, by introducing a monad for random computations,
we can show that the established definition of differential privacy falls out naturally as a special case
of this soundness principle. We develop examples including known differentially private algorithms,
privacy-aware variants of standard functional programming idioms, and compositionality principles for
differential privacy.

1 Introduction

It’s no secret that privacy is a problem. A wealth of information about individuals is accumulating in various
databases — patient records, content and link graphs of social networking sites, book and movie ratings, ...
— and there are many potentially good uses to which it could be put. But, as Netflix and others have learned
[NS08] to their detriment, even when data collectors try to release only anonymized or aggregated results, it
is easy to publish information that reveals much more than was intended, when cleverly combined with other
data sources. An exciting new body of work on differential privacy [Dwo06, Dwo08, BLR08, NRS07, Dwo09,
BDMN05, DMNS06] aims to address this problem by, first, replacing the informal goal of ‘not violating
privacy’ with a technically precise and strong statistical guarantee, and then offering various mechanisms
for achieving this guarantee. Essentially, a mechanism for publishing data is differentially private if any
conclusion made from the published data is almost exactly as likely if any one individual’s data is omitted
from the database. Methods for achieving this guarantee can be attractively simple, usually involving taking
the true answer to a query and adding enough random noise to blur the contributions of individuals.

For example, the query “How many patients at this hospital are over the age of 40?” is intuitively
“almost safe”—safe because it aggregates many individuals’ contributions together, and “almost” because,
if an adversary happened to know the ages of every patient except John Doe, then answering this query
would give them certain knowledge of a fact about John. The differential privacy methodology rests on the
observation that, if we add a small amount of random noise to its result, we can still get a useful idea of the
true answer to this query while obscuring the contribution of any single individual. By contrast, the query
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“How many patients are over the age of 40 and also happen to be named John Doe?” is plainly problematic,
since it is focused on an individual rather than an aggregate. Such a query cannot usefully be privatized: if
we add enough noise to obscure any individual’s contribution to the result, there won’t be any signal left.

So far, most of the work in differential privacy concerns specific algorithms rather than general, com-
positional language features. Although there is already an impressive set of differentially private versions
of particular algorithms [BDMN05, GLM+09], each new one requires its own separate proof. McSherry’s
Privacy Integrated Queries (PINQ) [McS09] are a good step toward more general principles: they allow for
some relational algebra operations on database tables, as well as certain forms of composition of queries.
But even these are relatively limited. We offer here a higher-order functional programming language whose
type system directly embodies reasoning about differential privacy. In this language, we can implement Mc-
Sherry’s principles of sequential and parallel composition of differentially private computations, and many
others besides, as higher-order functions. This provides a foundational explanation of why compositions of
differentially private mechanisms succeed in the ways that they do.

The central idea in our type system also appears in PINQ and in many of the algorithm-by-algorithm
proofs in the differential privacy literature: the sensitivity of query functions to quantitative differences in
their input. Sensitivity is a sort of continuity property; a function of low sensitivity maps nearby inputs
to nearby outputs. To give precise meaning to ‘nearby,’ we equip every type with a metric — a notion of
distance — on its values.

Sensitivity matters for differential privacy because the amount of noise required to make a deterministic
query differentially private is proportional to that query’s sensitivity. The sensitivity of both queries discussed
above is in fact 1: adding or removing one patient’s records from the hospital database can only change the
true value of the query by at most 1. This means that we should add the same amount of noise to “How
many patients at this hospital are over the age of 40?” as to “How many patients are over the age of 40, who
also happen to be named John Doe?” This may appear counter-intuitive, but actually it is just right: the
privacy of single individuals is protected to exactly the same degree in both cases. Of course, the usefulness
of the results differs: knowing the answer to the first query with, say, a typical error margin of ±100 could
still be valuable if there are thousands of patients in the hospital’s records, whereas knowing the answer to
the second query (which can only be zero or one) ±100 is useless. (We might try making the second query
more useful by scaling its answer up numerically: “Is John Doe over 40? If yes, then 1,000, else 0.” But
this query has a sensitivity of 1,000, not 1, and so 1,000 times as much noise must be added, blocking our
sneaky attempt to violate privacy.)

To track function sensitivity, we give a distance-aware type system. This type system embodies two
important connections between differential privacy and concepts from logic and type theory. First, reasoning
about sensitivity itself strongly resembles linear logic [Gir87, Bar96], which has been widely applied in
programming languages. The essential intuition about linear logic and linear type theories is that they treat
assumptions as consumable resources. We will see that in our setting the capability to sensitively depend on
an input’s value behaves like a resource. This intuition recurs throughout the paper, and we sometimes refer
to sensitivity to an input as if it is counting the number of “uses” of that input.

The other connection comes from the use of a monad to internalize the operation of adding random noise
to query results. We include in the programming language a monad for random computations, similar to
previously proposed stochastic calculi [RP02, PPT03]. Since every type has a metric in our setting, we are
led to ask: what should the metric be for the monad? We find that, with the right choice of metric, the
definition of differentially private functions falls out as a special case of the definition of function sensitivity
for functions, when the function output happens to be monadic. This observation is very useful: while prior
work treats differential privacy mechanisms and private queries as separate things, we see here that they can
be unified in a single language. Our type system can express the privacy-safety of individual queries, as well
as more complex query protocols (see Section 6) that repeatedly interact with a private database, adjusting
which queries they perform depending on the responses they receive.

To briefly foreshadow what a query in our language looks like, suppose that we have the following
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functions available:
over 40 : row → bool
size : db � R

filter : (row → bool) → db � db
add noise : !εR � �R

The predicate over 40 simply determines whether or not an individual database row indicates that patient
is over the age of 40. The function size takes an entire database, and outputs how many rows it contains.
Its type uses a special arrow �, related to the linear logic function type of the same name, which expresses
that the function has sensitivity of 1. The higher-order function filter takes a predicate on database rows
and a database; it returns the subset of the rows in the database that satisfy the predicate. This filtering
operation also has a sensitivity of 1 in its database argument, and again � is used in its type. Finally,
the function add noise is the differential privacy mechanism that takes a real number as input and returns
a random computation (indicated by the monad �) that adds in a bit of random noise (proportional to
ε). This function has a sensitivity of ε (described by the scaling modality !ε), and this fact is intimately
connected to privacy properties, as explained in Section 5.

With these in place, the query can be written as the program

λd : !εdb. let !d′ = d in add noise !(size (filter over 40 d′)) : !εdb � �R.

where some additional constructions are needed to deal with the privacy mechanism. As we explain in
Section 5, its type indicates that it is a differentially private computation1 taking a database and producing
a real number. Its runtime behavior is to yield a privacy-preserving noised count of the number of patients
in the hospital that are over 40.

We begin in Section 2 by describing a core type system that tracks function sensitivity. We state
an informal version of the key metric preservation theorem, which says the execution of every well-typed
function reflects the sensitivity that the type system assigns it. In Section 3 we state the standard safety
properties of the type system, and give a formal statement and proof of the metric preservation theorem.
Section 4 gives examples of programs that can be implemented in our language. Section 5 shows how to
add the probability monad, and Section 6 develops further examples. The remaining sections discuss related
work and offer concluding remarks.

2 A Type System for Function Sensitivity

2.1 Sensitivity

Our point of departure for designing a programming language for differential privacy is function sensitivity.
A function is said to be c-sensitive (or have sensitivity c) if it can magnify distances between inputs by a
factor of at most c. Since this definition depends on the input and output types of the function having a
metric (a notion of distance) defined on them, we begin by discussing a special case of the definition for
functions from R to R, where we can use the familiar Euclidean metric dR(x, y) = |x − y| on the real line.
We can then formally define c-sensitivity for real-valued functions as follows.

2.1.1 Definition: A function f : R → R is said to be c-sensitive iff dR(f(x), f(y)) ≤ c · dR(x, y) for all
x, y ∈ R.

A special case of this definition that comes up frequently is the case where c = 1. A 1-sensitive function
is also called a nonexpansive function, since it keeps distances between input points the same or else makes
them smaller. Some examples of 1-sensitive functions are

f1(x) = x f2(x) = −x f3(x) = x/2

1More precisely its type indicates that it is a ε-differentially private computation.
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f4(x) = |x| f5(x) = (x + |x|)/2

and some non-examples include: f6(x) = 2x and f7(x) = x2. The function f6, while not 1-sensitive, is
2-sensitive. On the other hand, f7 is not c-sensitive for any c.

2.1.2 Proposition: Every function that is c-sensitive is also c′-sensitive for every c′ ≥ c.

For example, f3 is both 1/2-sensitive and 1-sensitive.
So far we only have one type, R, with an associated metric. We would like to introduce other base types,

and type operators to build new types from old ones. We require that for every type τ that we discuss, there
is a metric dτ (x, y) for values x, y ∈ τ . This requirement makes it possible to straightforwardly generalize
the definition of c-sensitivity to arbitrary types.

2.1.3 Definition: A function f : τ1 → τ2 is said to be c-sensitive iff dτ2(f(x), f(y)) ≤ c · dτ1(x, y) for all
x, y ∈ τ1.

The remainder of this subsection introduces several type operators, one after another, with examples of
c-sensitive functions on the types that they express. We use suggestive programming-language terminology
and notation, but emphasize that the discussion for now is essentially about pure mathematical functions —
we do not yet worry about computational issues such as the possibility of nontermination. For example, we
speak of values of a type in a way that should be understood as more or less synonymous with mere elements
of a set — in Section 2.2 below, we will show how to actually speak formally about types and values.

First of all, when τ is a type with associated metric dτ , let !rτ be the type whose values are the same as
those of τ , but with the metric ‘scaled up’ by a factor of r. That is, we define

d!rτ (x, y) = r · dτ (x, y).

One role of this type operator is to allow us to reduce the concept of c-sensitivity to 1-sensitivity. For we
have

2.1.4 Proposition: A function f is a c-sensitive function in τ1 → τ2 if and only f it is a 1-sensitive function
in !cτ1 → τ2.

Proof: Let x, y : τ1 be given. Suppose dτ1(x, y) = r. Then d!cτ1(x,y) = cr. For f to be c-sensitive as a
function τ1 → τ2 we must have dτ2(f(x), f(y)) ≤ cr, but this is exactly the same condition that must be
satisfied for f to be a 1-sensitive function !cτ1 → τ2. �

We can see therefore that f6 is a 1-sensitive function !2R → R, and also in fact a 1-sensitive function
R → !1/2R. The symbol ! is borrowed from linear logic, where it indicates that a resource can be used an
unlimited number of times. In our setting an input of type !rτ is analogous to a resource that can be used
at most r times. We can also speak of !∞, which scales up all non-zero distances to infinity, which is then
like the original linear logic !, which allows unrestricted use.

Another way we can consider building up new metric-carrying types from existing ones is by forming
products. If τ1 and τ2 are types with associated metrics dτ1 and dτ2 , then let τ1 ⊗ τ2 be the type whose
values are pairs (v1, v2) where v1 ∈ τ1 and v2 ∈ τ2. In the metric on this product type, we define the distance
between two pairs to be the sum of the distances between each pair of components:

dτ1⊗τ2((v1, v2), (v′1, v
′
2)) = dτ1(v1, v

′
1) + dτ2(v2, v

′
2)

With this type operator we can describe more arithmetic operations on real numbers. For instance,

f8(x, y) = x + y f9(x, y) = x − y

are 1-sensitive functions in R ⊗ R → R, and

f10(x, y) = (x, y) f11(x, y) = (y, x) f12(x, y) = (x + y, 0)
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cswp(x, y) =
{

(x, y) if x < y
(y, x) otherwise

are 1-sensitive functions in R ⊗ R → R ⊗ R. We will see the usefulness of cswp in particular below in
Section 4.6. However,

f13(x, y) = (x · y, 0) f14(x, y) = (x, x)

are not 1-sensitive functions in R ⊗ R → R ⊗ R. The function f14 is of particular interest, since at no point
do we ever risk multiplying x by a constant greater than 1 (as we do in, say, f6 and f13) and yet the fact
that x is used twice means that variation of x in the input is effectively doubled in measurable variation of
the output. This intuition about counting uses of variables is reflected in the connection between our type
system and linear logic.

This metric is not the only one that we can assign to pairs. Just as linear logic has more than one
conjunction, our type theory admits more than one product type. Another one that will prove useful is
taking distance between pairs to be the maximum of the differences between their components instead the
sum. Even though the underlying set of values is essentially the same, we regard choosing a different metric
as creating a distinct type: the type τ1 & τ2 consists of pairs 〈v1, v2〉, (written differently from pairs of type
τ1 ⊗ τ2 to further emphasize the difference) with the metric

dτ1&τ2(〈v1, v2〉, 〈v′1, v2〉) = max(dτ1(v1, v
′
1), dτ2(v2, v

′
2)).

Now we can say that f15(x, y) = 〈x, x〉 is a 1-sensitive function R ⊗ R → R & R. More generally, & lets us
combine outputs of different c-sensitive functions even if they share dependency on common inputs.

2.1.5 Proposition: If f : τ → τ1 and g : τ → τ2 are c-sensitive functions, then λx.〈f x, g x〉 is a c-sensitive
function in τ → τ1 & τ2.

Next we would like to capture the set of functions itself as a type, so that we can, for instance, talk
about higher-order functions. Let us take τ1 � τ2 to be the type whose values are 1-sensitive functions
f : τ1 → τ2. We have already established that the presence of !r means that having 1-sensitive functions
suffices to express c-sensitive functions for all c, so we need not specially define an entire family of c-sensitive
function type constructors: the type of c-sensitive functions from τ1 to τ2 is just !cτ1 � τ2. We define the
metric for � as follows:

dτ1�τ2(f, f ′) = max
x∈τ1

dτ2(f(x), f ′(x))

This is chosen to ensure that � and ⊗ have the expected currying/uncurrying behavior with respect to each
other. We find in fact that

curry(f) = λx.λy.f (x, y)

uncurry(g) = λ(x, y).g x y

are 1-sensitive functions in (R⊗R � R) → (R � R � R) and (R � R � R) → (R⊗R � R), respectively.
We postulate several more type operators that are quite familiar from programming languages. The unit

type 1 which has only one inhabitant (), has the metric d1((), ()) = 0. Given two types τ1 and τ2, we can
form their disjoint union τ1 + τ2, whose values are either of the form inj1 v where v ∈ τ1, or inj2 v where
v ∈ τ2. Its metric is

dτ1+τ2(v, v′) =

{
dτ1(v0, v

′
0) if v = inj1 v0 and v′ = inj1 v′0;

dτ2(v0, v
′
0) if v = inj2 v0 and v′ = inj2 v′0;

∞ otherwise.

Note that this definition creates a type that is an extremely disjoint union of two components. Any distances
between pairs of points within the same component take the distance that that component specifies, but
distances from one component to the other are all infinite.

Notice what this means for the type bool in particular, which we define as usual as 1 + 1. It is easy to
write c-sensitive functions from bool to other types, for the infinite distance between the values true and
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false gives us license to map them to any two values we like, no matter how far apart they are. However, it
is conversely hard for a nontrivial function to bool to be c-sensitive. The function

gtzero(x) =
{

true if x ≥ 0;
false otherwise.

which tests whether the input is greater than zero, is not c-sensitive for any finite c. This can be blamed,
intuitively, on the discontinuity of gtzero at zero.

Finally, we include the ability to form (iso)recursive types µα.τ whose values are of the form fold v,
where v is of the type [µα.τ/α]τ , and whose metric we would like to give as

dµα.τ (fold v, fold v′) = d[µα.τ/α]τ (v, v′).

This definition, however, is not well-founded, since it depends on a metric at possibly a more complex type,
due to the substitution [µα.τ/α]τ . It will suffice as an intuition for our present informal discussion, since
we only want to use it to talk about lists (rather than, say, types such as µα.α), but a formally correct
treatment of the metric is given in Section 2.7.

With these pieces in place, we can introduce some useful and familiar types, such as the natural numbers
N = µα.1 + α, and the type of lists of real numbers, listreal = µα.1 + R ⊗ α. (The reader is invited to
consider also the alternative where ⊗ is replaced by &; we return to this choice below in Section 4.) The
metric between lists that arises from the preceding definitions is as follows. Two lists of different lengths are
at distance ∞ from each other; this comes from the definition of the metric on disjoint union types. For two
lists [x1, . . . , xn] and [y1, . . . , yn] of the same length, we have

dlistreal([x1, . . . , xn], [y1, . . . , yn]) =
n∑

i=1

|xi − yi|.

We now can make the claim that there is a 1-sensitive function sort : listreal � listreal that takes in a list
of reals and outputs the sorted version of that same list. This fact may seem somewhat surprising, since a
small variation in the input list can lead to an abrupt change in the permutation of the list that is produced.
However, what we output is not the permutation itself, but merely the values of the sorted list; the apparent
point of discontinuity where one value overtakes another is exactly where those two values are equal, and
their exchange of positions in the output list is unobservable.

Of course, we would prefer not to rely on such informal arguments. This example is meant to serve as
motivation for what we want to do in the sequel: design a rigorous type system to capture sensitivity of pro-
grams, so that we can see that the 1-sensitivity of sorting is a consequence of the fact that an implementation
of a sorting program is well-typed.

2.2 Typing Judgment

Type safety for a programming language ordinarily guarantees that a well-typed open expression e of type τ is
well-behaved during execution. ‘Well-behaved’ is usually taken to mean that e can accept any (appropriately
typed) value for its free variables, and will evaluate to a value of type τ without becoming stuck or causing
runtime errors: Well-typed programs can’t go wrong. We mean to make a strictly stronger guarantee than
this, namely a guarantee of c-sensitivity. It should be the case that if an expression is given similar input
values for its free variables, the results of evaluation will also be suitably similar: Well-typed programs can’t
go too far.

We will take, as usual, a typing judgment Γ 	 e : τ (expressing that e is a well-formed expression of type
τ in a context Γ) but we add further structure to the contexts, describing for each variable how sensitive the
expression is to it. By doing so we are essentially generalizing c-sensitivity to capture what it means for an
expression to be sensitive to many inputs simultaneously — that is, to all of the variables in the context —
rather than just one. Contexts Γ have the syntax

Γ ::= · | Γ, x :r τ
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for r ∈ R
>0 ∪ {∞}. To have a hypothesis x :r τ while constructing an expression e is to have permission to

be r-sensitive to variation in the input x: the output of e is allowed to vary by a distance up to rs if the
value substituted for x varies by distance s. We include the special value ∞ as an allowed value of r so that
we can express ordinary (unconstrained by sensitivity) functions as well as c-sensitive functions. Algebraic
operations involving ∞ are defined by setting ∞· r = ∞ (except for ∞· 0 = 0) and ∞+ r = ∞. This means
that to be ∞-sensitive is no constraint at all: if we consider the definition of sensitivity, then ∞-sensitivity
permits any variation at all in the input to be blown up to arbitrary variation in the output.

A well-typed expression
x :c τ1 	 e : τ2

is exactly a program that represents a c-sensitive computation. However, we can also consider more general
programs

x1 :r1 τ1, . . . , xn :rn τn 	 e : τ

in which case we define the guarantee to be that, if each xi varies by si, then the result of evaluating e only
varies by

∑
i risi.

This intended meaning of the typing judgment must eventually be formulated as a theorem about the
programming language as a whole, similar to standard preservation and progress theorems. In the notation
we have developed so far, it can be stated approximately as follows:

2.2.1 Theorem [Metric Preservation]: Suppose Γ 	 e : τ . Let sequences of values (vi)1≤i≤n and
(v′i)1≤i≤n be given. Suppose for all i ∈ 1, . . . , n that we have

1. 	 vi, v
′
i : τi

2. dτi(vi, v
′
i) = si

3. xi :ri τi ∈ Γ.

If the program [v1/x1] · · · [vn/xn]e evaluates to v, then there exists a v′ such that [v′1/x1] · · · [v′n/xn]e evaluates
to v′, and

dτ (v, v′) ≤
∑

i

risi.

The notation [v/x]e indicates (capture-avoiding) substitution of the value v for the variable x in expression
e as usual. However, we have not yet formalized the definition of the metric for the programming language,
which takes place below in Section 2.7. Subsequently, in Section 3, the metric preservation theorem is stated
and proved. We proceed for now by setting up the usual apparatus of our programming language: its type
structure, syntax, and its static and dynamic semantics.

2.3 Types

The complete syntax and formation rules for types are given in Figure 1. There are type variables α, (which
appear in type variable contexts Ψ) base types b (drawn from a signature Σ), unit and void and sum types,
metric-scaled types !rτ , and recursive types µα.τ . There are the two pair types ⊗ and &, which differ in
their metrics. There are two kinds of function space, � and →, where τ1 � τ2 contains just 1-sensitive
functions, while τ1 → τ2 is the ordinary unrestricted function space, containing the functions that can be
programmed without any sensitivity requirements on the argument.

2.4 Expressions

The syntax of expressions is straightforward; indeed, our language can be seen as essentially just a refinement
type system layered over the static and dynamic semantics of an ordinary typed functional programming
language. Almost all of the expression formers should be entirely familiar. One feature worth noting (which
is also familiar from linear type systems) is that we distinguish two kinds of pairs: the one that arises from
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τ ::= α | b | 1 | µα.τ | τ + τ | τ ⊗ τ | τ & τ | τ � τ | τ → τ | !rτ

Ψ, α : type � α : type

Ψ, α : type � τ : type

Ψ � µα.τ : type Ψ � 1 : type

b : type ∈ Σ

Ψ � b : type

Ψ � τ : type r ∈ R
>0 ∪ {∞}

Ψ � !rτ : type

Ψ � τ1 : type Ψ � τ2 : type � ∈ {+, &,⊗, �,→}
Ψ � τ1 � τ2 : type

Figure 1: Type Formation

r ≥ 1
var

Γ, x :r τ � x : τ

1I
Γ � () : 1

∆ � e1 : τ1 Γ � e2 : τ2
⊗I

∆ + Γ � (e1, e2) : τ1 ⊗ τ2

Γ � e : τ1 ⊗ τ2 ∆, x :r τ1, y :r τ2 � e′ : τ ′
⊗E

∆ + rΓ � let(x, y) = e in e′ : τ ′

Γ � e1 : τ1 Γ � e2 : τ2
&I

Γ � 〈e1, e2〉 : τ1 & τ2

Γ � e : τ1 & τ2
&E

Γ � πi e : τi

Γ � e : τ1 + τ2

∆, x :r τ1 � e1 : τ ′

∆, x :r τ2 � e2 : τ ′
+E

∆ + rΓ � case eof x.e1 | x.e2 : τ ′

Γ � e : τi
+I

Γ � inji e : τ1 + τ2

Γ, x :1 τ � e : τ ′
� I

Γ � λx.e : τ � τ ′

∆ � e1 : τ � τ ′ Γ � e2 : τ
� E

∆ + Γ � e1 e2 : τ ′

Γ, x :∞ τ � e : τ ′
→I

Γ � λx.e : τ → τ ′

∆ � e1 : τ → τ ′ Γ � e2 : τ
→E

∆ + ∞Γ � e1 e2 : τ ′

Γ � e : τ
!I

sΓ � !e : !sτ

Γ � e : !sτ ∆, x :rs τ � e′ : τ ′
!E

∆ + rΓ � let !x = e in e′ : τ ′

Γ � e : [µα.τ/α]τ
µI

Γ � fold
µα.τ

e : τ

Γ � e : τ
µE

Γ � unfold
µα.τ

e : [µα.τ/α]τ

Figure 2: Typing Rules

⊗, which is eliminated by pattern-matching and written with (parentheses), and the one that arises from &,
which is eliminated by projection and written with 〈angle brackets〉. The other is that for clarity we have
explicit introduction and elimination forms (! and let !, respectively) for the type constructor !r.

e ::= x | c | () | 〈e, e〉 | (e, e)
let(x, y) = e in e | πie | λx.e | e e |
inji e | (case eof x.e | x.e) |
!e | let !x = e in e |
unfoldτ e | foldτ e

Just as with base types, we allow for primitive constants c to be drawn from a signature Σ.

2.5 Typing Relation

To present the typing relation, we need a few algebraic operations on contexts. The notation sΓ indicates
pointwise scalar multiplication of all the sensitivity annotations in Γ by s :

s· = ·
s(Γ, x :r τ) = Γ, x :rs τ

We can also define addition of two contexts (which may share some variables) by

· + · = ·
(Γ, x :s τ) + (∆, x :r τ) = (Γ + ∆), x :r+s τ

(Γ, x :r τ) + ∆ = (Γ + ∆), x :r τ (x �∈ ∆)
Γ + (∆, x :r τ) = (Γ + ∆), x :r τ (x �∈ Γ)
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The typing relation is defined by the inference rules in Figure 2. Every occurrence of r and s in the
typing rules is assumed to be drawn from R

>0 ∪ {∞}.
The rule var allows a variable from the context to be used as long as its annotation is at least 1, since

the identity function is c-sensitive for any c ≥ 1. Any other context Γ is allowed to appear in a use of var,
because permission to depend on a variable is not an obligation to depend on it. (In this respect our type
system is closer to affine logic than linear logic.)

In the rule ⊗I, consider the role of the contexts. ∆ represents the variables that e1 depends on, and
captures quantitatively how sensitive it is to each one. Γ does the same for e2. In the conclusion of the rule,
we add together the sensitivities found in Γ and ∆, precisely because the distances in the type τ1 ⊗ τ2 are
measured by a sum of how much e1 and e2 vary. Compare this to &I, where we merely require that the
same context is provided in the conclusion as is used to type the two components of the pair.

We can see the action of the type constructor !r in its introduction rule. If we scale up the metric on
the expression being constructed, then we must scale up the sensitivity of every variable in its context to
compensate.

The closed-scope elimination rules for ⊗, +, and ! share a common pattern. The overall elimination has
a choice as to how much it depends on the expression of the type being eliminated: this is written as the
number r in all three rules. The cost of this choice is that context Γ that was used to build that expression
must then be multiplied by r. The payoff is that the variable(s) that appear in the scope of the elimination
(in the case of ⊗E, the two variables x and y, in +E the xs one in each branch) come with permission for
the body to be r-sensitive to them. In the case of !E, however, the variable appears with an annotation of
rs rather than r, reflecting that the !s scaled the metric for that variable by a factor of s.

We note that �I, since � is meant to capture 1-sensitive functions, appropriately creates a variable
in the context with an annotation of 1. Compare this to →I, which adds a hypothesis with annotation ∞,
whose use is unrestricted. Conversely, in →E, note that the context Γ used to construct the argument e2 of
the function is multiplied by ∞ in the conclusion. Because the function e1 makes no guarantee how sensitive
it is to its argument, we can in turn make no guarantee how much e1 e2 depends on the variables in Γ. This
plays the same role as requirements familiar in linear logic, that all variables used to form an argument to
an unrestricted implication must themselves be unrestricted.

2.6 Evaluation

We give a small-step operational semantics for the language, which is almost entirely routine. Values, the
subset of expressions that are allowed as finished results of evaluation, are defined as follows.

v ::= () | c | 〈v, v〉 | (v, v) | λx.e | inji v | foldτ v | !v

The judgment e �→ e′ says that e takes a step to e′. The complete set of evaluation rules is given in
Figure 3.

2.7 Metric Relation

We come now to the task of providing a notion of distance — a metric — for all the types in our language.
It is convenient to do this by establishing a metric relation v ∼r v′ that means v and v’ are no more than
distance r apart, rather than a metric function that outputs the distance given two values.

In fact, we define three relations for r ∈ R
>0

	 v ∼r v′ : τ
	 σ ∼γ σ′ : Γ◦

Γ 	 e ≈r e′ : τ

The symbol σ here stands for a substitution [v1/x1] · · · [vn/xn] of values for variables, and γ for a variable-
indexed vector of positive reals, which we write like a substitution, [r1/x1] · · · [rn/xn]. The notation Γ◦

denotes Γ with all sensitivity annotations erased. These judgments are defined in Figure 4.

9



e1 �→ e′1

e1 e2 �→ e′1 e2

e2 �→ e′2

v1 e2 �→ v1 e2
(λx.e) v �→ [v/x]e

e1 �→ e′1

〈e1, e2〉 �→ 〈e′1, e2〉
e2 �→ e′2

〈v1, e2〉 �→ 〈v1, e2〉
e �→ e′

πie �→ πie
′ πi〈v1, v2〉 �→ vi

e1 �→ e′1

(e1, e2) �→ (e′1, e2)

e2 �→ e′2

(v1, e2) �→ (v1, e2)

e �→ e′

let(x1, x2) = e in e0 �→ let(x1, x2) = e′ in e0

let(x1, x2) = (v1, v2) in e �→ [v1/x1][v2/x2]e

e �→ e′

inji e �→ inji e′

e �→ e′

case e of x.e1 | x.e2 �→ case e′ of x.e1 | x.e2

case inji v of x.e1 | x.e2 �→ [v/x]ei

e �→ e′

fold
τ

e �→ fold
τ

e′

e �→ e′

unfold
τ

e �→ unfold
τ

e′ unfold
τ

fold
τ

v �→ v

e �→ e′

!e �→ !e′

e �→ e′

let !x = e in e0 �→ let !x = e′ in e0
let !x = !v in e �→ [v/x]e

Figure 3: Evaluation Rules

We can summarize the meaning of the three metric judgments as follows. The basic judgment is 	 v ∼r

v′ : τ , which asserts that v and v′ are closed values of type τ no more than distance r apart from one
another. The rules that assign distances to pairs of values are organized to follow the type system; there is
one value metric rule for each way of forming a well-typed value. Of substitutions we can say 	 σ ∼γ σ′ : Γ◦,
which means that σ and σ′ are both closed substitutions of well-typed values for all the variables in Γ, and
the distance between each pair of values is reflected in the vector γ of real numbers. Finally, the metric on
arbitrary (possibly open) expressions is given by the judgment Γ 	 e ≈r e′ : τ . This judgment is defined
by a single rule, which requires that the two expressions be common substitution instances of a well-typed
expression e0. The distance between e = σe0 and e′ = σ′e0 is then γΓ. This is essentially a dot product of
the distance vector γ between σ and σ′, and the sensitivities found in the context Γ used to type e0. We
define γΓ by

([r1/x1] · · · [rn/xn])(x1 :s1 τ1, . . . , xn :sn τn) =
n∑

i=1

risi.

It is worth noticing that in the metric judgments the meta-variables r and s are assumed to be drawn only
from R

>0. This differs from what happens in the case of the typing judgments, where r and s are assumed
to be drawn from R

>0 ∪ {∞}. Two values that are not in the relation ∼r (for every r) are morally infinitely
apart. For instance, this happens when two values in different components of a disjoint union are considered,
i.e. ∀r, inj1 v �∼r inj2 v′. In particular, note that in the metric scaling rule, the product rs should be in R

>0.
Analogously, in the metric for arbitrary expression we want γΓ to be defined only when γΓ ∈ R

>0.
The definition of the evaluation metric relation ≈ may seem circular: we want to be convinced that the

sensitivity annotations in the type system constrain the metric behavior of programs, and yet we seem to
be defining the metric in terms of the type system! However, this apparent circularity is ultimately benign.
The heart of the matter is that the metric on expressions is preserved by the process of evaluation, and that
at the end of the day, the metric on observable values is defined independently of the type system.

3 Metatheory

In this section we prove the formal correctness of the programming language described above. First of all,
we can prove appropriate versions of the usual basic properties that we expect to hold of a well-formed typed
programming language.

We say that Γ ≤ ∆ when there exists a ∆′ such that ∆ = ∆′ + Γ.
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� v : τ

� v ∼0 v : τ

� v1 ∼r1 v′1 : τ1 � v2 ∼r2 v′2 : τ2

� (v1, v2) ∼r1+r2 (v′1, v′2) : τ1 ⊗ τ2

� v1 ∼r v′1 : τ1 � v2 ∼r v′2 : τ2

� 〈v1, v2〉 ∼r 〈v′1, v′2〉 : τ1 & τ2

� v ∼r v′ : τi

� inji v ∼r inji v′ : τ1 + τ2

x :1 τ � e ≈r e′ : τ0

� λx.e ∼r λx.e′ : τ � τ0

x :∞ τ � e ≈r e′ : τ0

� λx.e ∼r λx.e′ : τ → τ0

� v ∼r v′ : τ

� !v ∼rs !v′ : !sτ

� v ∼r v′ : [µα.τ/α]τ

� fold
µα.τ

v ∼r fold
µα.τ

v′ : τ

� σ ∼γ σ′ : Γ◦ Γ, Γ0 � e0 : τ

Γ0 � σe0 ≈γΓ σ′e0 : τ

� v1 ∼r1 v′1 : τ1 · · · � vn ∼rn v′n : τn

� [v1/x1] · · · [vn/xn] ∼[r1/x1],...,[rn/xn] [v′1/x1] · · · [v′n/xn] : (x1 : τ1, . . . , xn : τn)

Figure 4: Metric Rules

3.1 Lemma [Weakening]: If Γ ≤ ∆, and Γ 	 e : τ , then ∆ 	 e : τ .

Proof: By straightforward induction on the typing derivation. �

3.2 Theorem [Substitution]: If Γ 	 e : τ and ∆, x :r τ 	 e′ : τ ′, then ∆ + rΓ 	 [e/x]e′ : τ ′.

Proof: By induction on the derivation of ∆, x :r τ 	 e′ : τ ′. A critical case is when this derivation is an
instance of the variable rule using the variable x:

r ≥ 1
var

∆, x :r τ 	 x : τ

In this case, τ = τ ′. Our obligation is to show that ∆+ rΓ 	 e : τ . But it can easily be seen that Γ ≤ ∆+ rΓ
when r ≥ 1. Therefore we can apply the weakening lemma above to the assumption that Γ 	 e : τ .

The rest of the cases follow straightforwardly from application of the induction hypothesis to every
premise of the relevant typing rule. Simple arithmetic reasoning is also required for the bookkeeping on
context annotations. For instance, in the case of e′ =!e0, we consider a derivation

∆0, x :r0 τ 	 e0 : τ0
!I

s∆0, x :r0s τ 	 !e0 : !sτ0

where τ ′ = !sτ0 and ∆ = s∆0 and r = r0s. In this case we apply the induction hypothesis to obtain
∆0 + r0Γ 	 [e/x]e0 : τ0, and conclude (using the rule !I) that

s(∆0 + r0Γ) 	 ![e/x]e0 : !sτ0

which is the same thing as
∆ + rΓ 	 [e/x]e′ : τ ′

as required. �

3.3 Theorem [Preservation]: If 	 e : τ and e �→ e′, then 	 e′ : τ .

Proof: Direct proof by case analysis on the possible derivations of e �→ e′. We consider a typical case.

Case:

(λx.e) v �→ [v/x]e

By inversion on the well-typedness of (λx.e) v we either have a derivation of the form

x :1 τ 	 e : τ ′

	 λx.e : τ � τ ′ 	 v : τ

	 (λx.e) v : τ ′

11



or
x :∞ τ 	 e : τ ′

	 λx.e : τ → τ ′ 	 v : τ

	 (λx.e) v : τ ′.

In either case, the above substitution principle allows us to conclude that [v/x]e : τ ′.

�

3.4 Theorem [Progress]: If 	 e : τ , then either e is a value, or there exists e′ �→ e.

Proof: By induction on the typing derivation. We again consider a typical case. Suppose e’s typing
derivation arises as

∆ 	 e1 : τ � τ ′ Γ 	 e2 : τ
� E

∆ + Γ 	 e1 e2 : τ ′

By induction hypothesis, either e1 is a value or takes a step. If it takes a step, say, to e′1, then the application
takes a step via

e1 �→ e′1
e1 e2 �→ e′1 e2

Otherwise it is a value, but it has type τ � τ ′, and by inversion on the typing rules must be of the form
λx.e0. Again by induction e2 is either a value or takes a step. If it takes a step, say, to e′2, then the application
takes a step

e2 �→ e′2
(λx.e0) e2 �→ (λx.e0) e2

But if e′2 = v is a value, then the application takes a step

(λx.e0) v �→ [v/x]e0

�

Note that the weakening lemma allows both making the context larger, and making the annotations
numerically greater. The substitution property says that if we substitute e into a variable that is used r
times, then Γ, the dependencies of e, must be multiplied by r in the result. The preservation and progress
lemmas are entirely routine, but we still need to observe that the standard evaluation rules are compatible
with our type system. Because evaluation takes place on closed terms, however, the context annotations we
introduce are only trivially involved. They play an important role in the next section.

3.1 Metric Preservation Theorem

In this section we will show that parallel evaluation of a pair of expressions preserves (or decreases) the
distance between them.

There are several lemmas required along the way. Our first milestone will be seeing that ≈ and ∼ coincide
on those expressions that happen to be values. One direction of this is easy, namely seeing that ∼ implies
≈.

3.1.1 Lemma: If 	 v ∼r v′ : τ , then 	 v ≈r v′ : τ .

Proof: Use the expression metric rule directly.

	 [v/x] ∼[r/x] [v′/x] : Γ
var

x :1 τ 	 x : τ

	 [v/x]x ≈r [v′/x]x : τ

�
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To accomplish the other direction, that ≈ implies ∼, we first prove a result that is like a strengthened
version of the expression metric rule for substitutions that yield closed values.

3.1.2 Lemma: Suppose Γ 	 e : τ . If 	 σ ∼γ σ′ : Γ◦, and σe is a value, then σ′e must also be a value, and
	 σe ∼γΓ σ′e : τ

Proof: By case analysis on the structure of e. One case arises from the possibility that e is a variable,
and the remainder of cases correspond to value-formers in the language. There are no cases for elimination
forms, because a substitution cannot turn an elimination into a value.

We show some representative cases:

Case: e is a variable x : τx ∈ Γ. In this case, σ(x) = v and σ′(x) = v′. Say γ(x) = r. We must show that
	 v ∼r v′ : τx, but this follows directly from inspection of σ ∼γ σ′ : Γ◦.

Case: e = λx.e0. We must show 	 λx.σe0 ∼γΓ λx.σ′e0 : τ � τ0, which in turn requires x :1 τ 	 σe0 ≈γΓ

σ′e0 : τ0. But this follows immediately from the inference rule defining ≈.

Case: e = (e1, e2). We must show 	 (σe1, σe2) ∼γ(Γ1+Γ2) (σ′e1, σ
′e2) : τ1 ⊗ τ2. But we get by the induction

hypothesis that 	 σei ∼γΓi σ′ei : τi for both i, so we just plug these facts into the value metric rule
for ⊗. �

3.1.3 Corollary: If 	 v ≈r v′ : τ , then 	 v ∼r v′ : τ .

Proof: By inversion on the rule defining ≈, we know v, v′, r must arise as v = σe0 and v′ = σ′e0 and
r = γΓ so that

	 σ ∼γ σ′ : Γ◦ Γ 	 e0 : τ

	 σe0 ≈γΓ σ′e0 : τ

By the preceding lemma, we have 	 σe0 ∼γΓ σ′e0 : τ , as required. �

Another important property of ≈ is that it respects substitution.

3.1.4 Lemma [Substitution into ≈]: The following rule is admissible:

∆ 	 e ≈r e′ : τ ∆0, x :s τ 	 e0 ≈r0 e′0 : τ0

∆0 + s∆ 	 [e/x]e0 ≈r0+rs [e′/x]e′0 : τ0

Proof: By inversion on the rule defining ≈, there must exist ê0, σ0, σ
′
0, Γ0, γ0 such that such that σ0ê0 = e0,

σ′
0ê0 = e′0, γ0Γ0 = r0 and

	 σ0 ∼γ0 σ′
0 : Γ◦

0 Γ0, ∆0, x :s τ 	 ê0 : τ0

∆0, x :s τ 	 σ0ê0 ≈γ0Γ0 σ′
0ê0 : τ0

as well as ê, σ, σ′, Γ, γ such that such that σê = e, σ′ê = e′, γΓ = r and

	 σ ∼γ σ′ : Γ◦ Γ, ∆ 	 ê : τ

∆ 	 σê ≈γΓ σ′ê : τ

By the substitution lemma on typing derivations that we have already shown, we find that

Γ0, sΓ, ∆0 + s∆ 	 [ê/x]e0 : τ0

and so we then directly build a derivation

	 (σ0, σ) ∼(γ0,γ) (σ′
0, σ

′) : (Γ◦
0, Γ

◦) Γ0, sΓ, ∆0 + s∆ 	 [ê/x]e0 : τ0

∆0 + s∆ 	 [σê/x]σ0e0 ≈γ0Γ0+γsΓ [σ′ê/x]σ′
0e0 : τ0

�
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Now we come to the central technical lemma of this section. The reader may wish to refer to the
immediately following Theorem 3.1.6 to see how the statement of this lemma arises.

3.1.5 Lemma [Metric Compatibility]: Γ 	 e : τ and 	 σ ∼γ σ′ : Γ◦. If σe �→ ef , then then there exists
e′f such that σ′e �→ e′f and 	 ef ≈γΓ e′f : τ .

Proof: By induction on the typing derivation of e, with further case analysis on the evaluation step taken.
The subscript f is used to denote the future state of evaluation. We show representative cases below.

Case: e’s typing derivation is
ΓL 	 eL : τ0 � τ ΓR 	 eR : τ0 �E

ΓL + ΓR 	 eL eR : τ

By direct construction of derivations we find

	 σeL ≈γΓL σ′eL : τ0 � τ

	 σeR ≈γΓR σ′eR : τ0

Split cases on the evaluation rule used to show that σe �→ ef .

Subcase:
σeL �→ eLf

σeL σeR �→ eLf σeR

By the induction hypothesis, there exists e′Lf such that σ′eL �→ e′Lf and 	 eLf ≈γΓL e′Lf : τ0 � τ . By
appropriate substitutions into x :1 τ0 � τ, y :1 τ0 	 x y ≈0 x y : τ , we get that 	 eLf σeR ≈γΓL+γΓR

e′Lf σ′eR : τ , as required.

Subcase:
σeR �→ eRf

σeL σeR �→ σeL eRf

Here it must be that σeL is a value. Hence σ′eL must also be a value. By the induction hypothesis,
there exists e′Rf such that σ′eR �→ e′Rf and 	 eRf ≈γΓR e′Rf : τ0. By appropriate substitutions into
x :1 τ0 � τ, y :1 τ0 	 x y ≈0 x y : τ , we get that 	 σeL eRf ≈γΓL+γΓR σ′eLf e′Rf : τ , as required.

Subcase: (λx.e0) (σeR) �→ [(σeR)/x]e0

Here it must be that σeR is a value, and σeL = λx.e0. Hence σ′eR is also a value, and σ′eL is of the
form λx.e′0. By Corollary 3.1.3 (the coincidence of ∼ and ≈ on values) we know

	 λx.e0 ∼γΓL λx.e′0 : τ0 � τ

and by inversion we find
x :1 τ0 	 e0 ≈γΓL e′0 : τ

Plainly (λx.e′0) (σ′eR) �→ [(σ′eR)/x]e′0, so what we must show is that

	 [(σeR)/x]e0 ≈γΓL+γΓR [(σ′eR)/x]e′0 : τ

but this follows immediately by the substitution lemma for ≈.

Case:
Γ, x :1 τL 	 e0 : τR →I

Γ 	 λx.e0 : τL � τR

This case cannot arise. Since e is λx.e0, then no matter what σ is, σe is still a function value λx.σe0 and
cannot take a step.
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Case: e’s typing derivation is
Γ 	 e0 : τ

!I
sΓ 	 !e0 : !sτ

in this case the evaluation step must have been of the form

σe0 �→ e0f

!σe0 �→ !e0f

By induction hypothesis, there exists e′0f such that 	 e0f ≈γΓ e′0f and σ′e0 �→ e′0f . Therefore !σe′0 �→ !e′0f .
We can form a derivation of x :s τ 	 !x : !sτ , and from it a derivation of x :s τ 	 !x ≈0 !x : !sτ , and by
substitution into ≈ we get 	 !e0f ≈sγΓ !e′0f : !rτ , as required.

Case: e’s typing derivation is
Γ 	 e : !sτL ∆, x :rs τL 	 eR : τR

!E
∆ + rΓ 	 let !x = eL in eR : τR

Subcase: The evaluation step is

σeL �→ eLf

let !x = σeL inσe0 �→ let !x = eLf inσe0

By induction hypothesis, there exists e′Lf such that we have σ′eL �→ e′Lf and 	 eLf ≈γΓ e′Lf : !sτL. We can
form a derivation

	 σ ∼γ σ′ : ∆◦ ∆, y :r τL 	 let !x = y in eR : τR

y :r τL 	 let !x = y inσeR ≈γ∆ let !x = y inσ′eR : τR

(assuming without loss of generality that Γ◦ = ∆◦) and, by the substitution property for ≈, obtain

	 let !x = eLf inσeR ≈γ∆+rγΓ let !x = e′Lf inσ′eR : τR

as required.

Subcase: The evaluation step is

let !x = !v inσeR �→ [v/x]σeR

where σeL = !v is a value. We can directly obtain:

	 σeL ≈γΓ σ′eL : !sτL

x :rs τL 	 σeR ≈γ∆ σ′eR : τR

But by Corollary 3.1.3 and inversion on the value metric rules, the former of these implies we must have had
a derivation of

	 σeL ∼q σ′eL : τL

	 σeL ∼γΓ σ′eL : !sτL

for some number q such that qs = γΓ. (We avoid saying q = γΓ/s since s might have been ∞.) So σ′eL is
also a value, of the form !v′. Thus we have

let !x = σ′eL inσeR �→ [v′/x]σ′eR

and substitution leads to
	 [v/x]σeR ≈γ∆+qrs [v′/x]σ′eR

as required, since γ∆ + qrs = γ(∆ + rΓ). �
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We now obtain that the metric is preserved by each step of evaluation: if two expressions are close, and
one takes a step, then the other must also take a step, and the two results remain as close.

3.1.6 Theorem [Metric Preservation]: If 	 e ≈r e′ : τ and e �→ ef , then there exists e′f such that
e′ �→ e′f and 	 ef ≈r e′f : τ .

Proof: By inversion on the rule defining ≈, we know that e, e′, r must arise as e = σe0 and e′ = σ′e0 and
r = γΓ such that

	 σ ∼γ σ′ : Γ◦ Γ 	 e0 : τ

	 σe0 ≈γΓ σ′e0 : τ

The proof is completed by appeal to the previous lemma. �

From this we can make a corresponsing statement about the complete evaluation of two expressions. Let
e ↪→ v means that e �→ · · · �→ v.

3.1.7 Theorem [Big-Step Metric Preservation]: If 	 e ≈r e′ : τ and e ↪→ v, then there exists v′ such
that e′ ↪→ v′ and 	 v ∼r v′ : τ .

Proof: By repeated application of Theorem 3.1.6, we find 	 v ≈r v′ : τ . But by Corollary 3.1.3, we know
then also that 	 v ∼r v′ : τ . �

3.2 Primitive Operations

In the following sections, we will want to add typed primitive operations to make it possible to write realistic
programs. In this section we schematically show what reasoning is required for each new primitive we want
to add.

Suppose we want to add a 1-sensitive unary operation f , whose input is of type τ , and whose return type
is τ ′. Operations of other arities and sensitivies can be achieved by judicious choice of τ . We sometimes
will write suggestively that f : τ � τ ′, even though this is somewhat an abuse of notation: f without its
argument is not itself a well-formed expression. We assume that we have specified an underlying mapping
(i.e., an ordinary mathematical function) f that takes a closed value of type τ , and yields a closed value of
type τ ′. Moreover we require f , as a mathematical function, is 1-sensitive:

Postulate Suppose we have 	 v : τ and 	 v′ : τ and 	 v ∼r v′ : τ . Then 	 f(v) ∼r f(v′) : τ .

We extend the language with the expression

e ::= · · · | f(e)
and add a typing rule for it:

∆ 	 e : τ

∆ 	 f(e) : τ ′

as well as a pair of evaluation rules:

e �→ e′

f(e) �→ f(e′) f(v) �→ f(v)

The cases introduced by this new expression former for the basic metatheoretic results (weakening,
substitution, preservation, progress) are trivial to show. Since we introduce no new forms of values, many
of the lemmas that work towards the metric preservation theorem are unchanged.

The new work we must do is confined to Lemma 3.1.5. The interesting case is for the evaluation step
that encounters all values in the arguments of f and therefore actually invokes f . We have by assumption a
derivation

∆ 	 e : τ

∆ 	 f(e) : τ ′
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where by weakening we may assume without loss that ∆◦ = Γ◦. We also have substitutions 	 σ ∼γ σ′ : Γ◦,
and the evaluation step

f(σe) �→ f(σe)

together with the knowledge that σe is a value. By Lemma 3.1.2, σ′e is also a value, such that 	 σe ∼γ∆

σ′e : τ ′. But from this we directly get

f(σ′e) �→ f(σ′e)

and by assumption of f , we know therefore that

	 f(σe) ∼γ∆ f(σ′e) : τ ′

from which it follows that
	 f(σe) ≈γ∆ f(σ′e) : τ ′

as required.

4 Examples

We now present some more complex examples of programs that can be written in our language. We continue
to introduce new base types and new constants as they become relevant. For readability, we use syntactic
sugar for case analysis and pattern matching á la ML.

4.1 Arithmetic Primitives

As a warm-up, add a base type R whose values are real numbers, with the metric rule

|r − r′| ≤ k

	 r ∼k r′ : R

For an example primitive operation, consider adding plus : R⊗R � R. By the result of the previous section,
we must show that whenever we have 	 v ∼k v′ : R ⊗ R, that we also have 	 plus(v) ∼k plus(v′) : R. But
every closed value v of type R⊗R must be a pair of real numbers (r1, r2), and likewise v′ must be of the form
(r′1, r

′
2). Plugging in the intended semantics of the primitive as being addition of the underlying numbers, our

proof obligation is to show from 	 (r1, r2) ∼k (r′1, r
′
2) : R ⊗ R that 	 (r1 + r2) ∼k (r′1 + r′2) : R. By inversion

of the tensor metric rule, we know that 	 r1 ∼k1 r′1 : R and 	 r2 ∼k2 r′2 : R for some k1 and k2 whose sum
is k. But then by the triangle inequality we have |(r1 + r2)− (r′1 + r′2)| ≤ |r1 − r′1|+ |r2 − r′2| ≤ k1 + k2 = k.

Note that if we prefer to have a curried addition function, we can easily write

curriedPlus = λx.λy.plus(x, y)

so that
	 curriedPlus : R � R � R

When we declare further primitives below, we tend to write them with curried function types without explic-
itly discussing the requisite wrapper. This is particularly more readable in the case of unrestricted functions:
suppose that we wanted to add a multiplication primitive. Multiplication has no bounded sensitivity as a
function from R⊗R to R, but by using the ! type operator it can be added as a primitive times : !∞R⊗!∞R �
R. Going through the same routine as above, we must show that 	 (r1, r2) ∼k (r′1, r

′
2) : !∞R ⊗ !∞R that

implies 	 (r1 + r2) ∼k (r′1 + r′2) : R, for every r1, r
′
1, r2, r

′
2, k.

However, because of the !∞s, the metric relation 	 (r1, r2) ∼k (r′1, r
′
2) : !∞R ⊗ !∞R only holds at all

when k = 0 (and r1 = r′1 and r2 = r′2), and our obligation is trivialized. We can improve our programs’
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appearance every time we call times by again currying, and hiding the expression-formers for ! inside a
wrapper function:

curriedTimes = λx.λy.times(!x, !y)

so that
	 curriedTimes : R → R → R.

Again, when we introduce primitives below, we will freely give just the curried type without explicitly
rehearsing this construction of wrapper functions.

Even if multiplication has no bounded sensitivity, it is sometimes useful having multiplication for a given
positive real number. This allows one to scale both values and functions. For each c ∈ R

>0 a primitive
scalec can be added as

	 scalec : !cR → R

These primitives will be useful in Section 6.

4.2 Fixpoint Combinator

Because we have general recursive types, we can simulate a fixpoint combinator in more or less the usual
way: we just need to be a little careful about how sensitivity interacts with fixpoints.

Let τ0 = µα.α → (τ � σ). Then the expression

Yf = (λx.λa.f ((unfoldτ0 x) x) a)
(foldτ0 (λx.λa.f ((unfoldτ0 x) x) a))

satisfies
f :∞ (τ � σ) → (τ � σ) 	 Yf : τ � σ

This is the standard call-by-value fixed point operator (differing from the more familiar Y combinator by
the two λa · · · a eta-expansions). It is easy to check that the unfolding

Yf v �→∗ f Yf v

takes place if we let f be a function value λx.e.
We could alternatively add a fixpoint operator fixf.e to the language directly, with the following typing

rule:
Γ, f :∞ τ � σ 	 e : τ � σ

∞Γ 	 fixf.e : τ � σ

This rule reflects the type we assigned to Y above: uses of fix can soundly be compiled away by defining
fixf.e = Yλf.e. The fact that f is added to the context annotated ∞ means that we are allowed to call the
recursive function an unrestricted number of times within e. The context Γ must be multiplied by ∞ in
the conclusion because we can’t (because of the fixpoint), establish any bound on how sensitive the overall
function is from just one call to it. In the rest of the examples, we write recursive functions in the usual
high-level form, eliding the translation in terms of Y .

4.3 Lists

We can define the type of lists with elements in τ as follows:

τ list = µα.1 + τ ⊗ α

We write [ ] for the nil value foldτ list inj1() and h :: tl for foldτ list inj2(h, tl), and we use common list
notations such as [a, b, c] for a :: b :: c :: [ ]. Given this, it is straightforward to program map in the usual
way.

map : (τ � σ) → (τ list � σ list)
map f [ ] = [ ]
map f (h :: tl) = (f h) :: map f tl
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The type assigned to map reflects that a nonexpansive function mapped over a list yields a nonexpansive
function on lists. Every bound variable is used exactly once, with the exception of f ; this is permissible
since f appears in the context during the typechecking of map with an ∞ annotation.

Similarly, we can write the usual fold combinators over lists:

foldl : (τ ⊗ σ � σ) → (σ ⊗ τ list) � σ
foldl f (init, [ ]) = init
foldl f (init, (h :: tl)) = foldl f (f(h, init), tl)

foldr : (τ ⊗ σ � σ) → (σ ⊗ τ list) � σ
foldr f (init, [ ]) = init
foldr f (init, (h :: tl)) = f (h, foldr f (init, tl))

Again, every bound variable is used once, except for f , which is provided as an unrestricted argument,
making its repeated use acceptable. The fact that the initializer to the fold (of type σ) together with the
list to be folded over (of type τ list) occur to the left of a � is essential, capturing the fact that variation in
the initializer and in every list element can jointly affect the result.

Binary and iterated concatenation are also straightforwardly implemented:

@ : τ list ⊗ τ list � τ list
@ ([ ], x) = x
@ (h :: tl, x) = h :: @ (tl, x)

concat : τ list list � τ list
concat [ ] = [ ]
concat (h :: tl) = @ (h, concat tl)

If we define the natural numbers as usual by

nat = µα.1 + α
z = foldnat inj1()
s x = foldnat inj2 x

then we can implement a function that finds the length of a list as follows:

length : τ list � nat
length [ ] = z
length (h :: tl) = s (length tl)

However, this implementation is less than ideal, for it ‘consumes’ the entire list in producing its answer,
leaving further computations unable to depend on it. We can instead write

length : τ list � τ list⊗nat
length [ ] = ([ ], z)
length (h :: tl) = let(tl′, 	) = length tl in(h :: tl′, s 	)

which deconstructs the list enough to determine its length, but builds up and returns a fresh copy that can
be used for further processing. Consider why this function is well-typed: as it decomposes the input list into
h and tl, the value of h is only used once, by including it in the output. Also, tl is only used once, as it is
passed to the recursive call, which is able to return a reconstructed copy tl′, which is then included in the
output. At no point is any data duplicated, but only consumed and reconstructed.

The definition on lists permits to distribute the metric-scale modality over list elements. Indeed, for each
c ∈ R we have a function:

ldistribute :!c(τ list) �!cτ list
ldistribute !([ ]) = [ ]
ldistribute !(h :: tl) =!h :: (ldistribute tl)

These functions will be useful in Section 6.
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4.4 &-lists

Another definition of lists uses & instead of ⊗: we can say τ alist = µα.1 + τ & α. (the ‘a’ in alist is for
‘ampersand’). To distinguish these lists visually from the earlier definition, we write Nil for foldτ alist inj1()
and Cons p for foldτ list inj2 p.

Recall that & is eliminated by projection rather than pattern-matching. This forces certain programs
over lists to be implemented in different ways. We can still implement map for this kind of list without much
trouble.

amap : (τ � σ) → (τ alist � σ alist)
amap f Nil = Nil
amap f (Cons p) = Cons〈f (π1p),map f (π2p)〉

This function is well-typed (despite the apparent double use of p in the last line!) because the &I rule
allows the two components of an &-pair to use the same context. This makes sense, because the eventual
fate of an &-pair is to have one or the other of its components be projected out.

The fold operations are more interesting. Consider a näıve implementation of foldl for alist

afoldl : (τ & σ � σ) → (σ & τ alist) � σ alist
afoldl f p = case π2pof x. π1p

| x. afoldl f 〈f〈π1x, π1p〉, π2x〉
where we have replaced ⊗ with & everywhere in foldl’s type to get the type of afoldl. This program is not
well-typed, because π1p is still used in each branch of the case despite the fact that π2p is case-analyzed.
The +E rule sums together these uses, so the result has sensitivity 2, while afoldl is supposed to be only
1-sensitive to its argument of type σ & τ alist.

We would like to case-analyze the structure of the second component of that pair, the τ alist, without
effectively consuming the first component. The existing type system does not permit this, but we can soundly
add a primitive2

analyze : σ & (τ1 + τ2) � (σ & τ1) + (σ & τ2)

that gives us the extra bit that we need. The operational behavior of analyze is simple: given a pair value
〈v, inji v′〉 with v : σ and v′ : τi, it returns inji 〈v, v′〉. With this primitive, a well-typed implementation of
afoldl can be given as follows:

unf : (σ & τ alist) � (σ & (1 + τ & τ alist))
unf p = 〈π1p,unfoldτ alist π2p〉

afoldl : (τ & σ � σ) → (σ & τ alist) � σ alist
afoldl f p = case analyze (unf p)of

x : (σ & 1). π1x
| x : (σ & (τ & τ alist)). afoldl f 〈f〈π1π2x, π1x〉, π2π2x〉

4.5 Sets

Another useful collection type is finite sets. We posit that τ set is a type for any type τ , whose values are
finite sets {v1, . . . , vn} of closed values of type τ . The metric on τ set is the Hamming metric, defined by the
rule ‖S1 � S2‖ ≤ r

	 S1 ∼r S2 : τ set

2The reader may note that this primitive is exactly the well-known distributivity property that the BI, the logic of bunched
implications [OP99], notably satisfies in contrast with linear logic. We conjecture that a type system based on BI might also be
suitable for distance-sensitive computations, but we leave this to future work, because of uncertainties about the decidability of
typechecking and BI’s lack of exponentials, that is, operators such as !, which are important for interactions between distance-
sensitive and -insensitive parts of a program.
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where � indicates symmetric difference of sets, and ‖S‖ the cardinality of the set S. In short, the distance
between two sets is the number of elements that are in one set but not in the other.

Note that there is no obvious way to implement this type of sets in terms of the list types just presented,
because of the metric; two sets of different size are a finite distance from one another, but two lists (as
implemented above) of different size are infinitely far apart.

Some basic set primitives that can be include

size : τ set � R

∩,∪, \ : τ set ⊗ τ set � τ set

where size returns the cardinality of a set, ∩ returns the intersection of two sets, ∪ their union, and \
the difference. It is easy to check that these satisfy the postulate in Section 3.2. For example, size is
1-sensitive because the insertion or deletion of any element from the set input only results in a numeric
change of 1 in the output. Notably, for the last three primitives above, we could not have given them
the type τ set & τ set � τ set. For an informal counterexample, consider {b} ∪ {c, d} = {b, c, d} and
{a} ∪ {c, d, e} = {a, c, d, e}. We have {b} ∼2 {a} and {c, d} ∼1 {c, d, e} on the two inputs to ∪, but we can
only get {b, c, d} ∼3 {a, c, d, e}, a greater distance than 2 = max(2, 1).

We would also like to add primitives to manipulate sets. In particular we would like to add primitives
forstandard higher-order functional operations like filter and map. We might suppose we could include the
following operations:

setfilter : (τ → bool) → τ set � τ set
setmap : (σ → τ) → σ set � τ set

However, as written, these types are not correct for the intended behavior. The problem has to do with the
possibility of nontermination in the non sensitive functions passed in as an argument.

Consider the function

f =def λx. if x = 0 then loop() else true : N → bool

(where loop is a function that goes into an infinite loop) and the two programs

f {1, 2, 3} and f {0, 1, 2, 3}.

We have 	 {1, 2, 3} ∼1 {0, 1, 2, 3} : N set, and yet we would expect to have setfilter f {1, 2, 3} ↪→ {1, 2, 3}
while setfilter f {0, 1, 2, 3} should diverge.

It is worth noticing the difference with the list case. Remember that map on lists has been defined with
type

(τ � σ) → (τ list � σ list)

So, in the list case the function f defined above cannot be passed as argument. One can wonder why this
difference? Or even one can think to restrict map and filter also in the set case to functions which are
1-sensitive. In the case of sets where elements cannot be accessed directly, 1-sensitive functions are of little
interest because these are functions that cannot really distinghuish between elements. While can be accepted
on list where there is a direct access to the elements, in the case of sets one want to use functions as map
and filter to obtain set manipulations through an (indirect) access to the elements. So, one should be able
to map or filter using non sensitive functions.

This problem can be solved by imposing limits on the execution of the functional argument. We add
instead

setfilter : (τ → bool) → N → τ set � τ set
setmap : (σ → τ) → N → τ → σ set � τ set

where the argument of type N is the number of steps we allow the function to run before (in the case of
setfilter) eliminating the element from the filtered set or (in the case of setmap) returning instead a default
element of type τ , provided as an argument to setmap.
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Formally, we specify the underlying mathematical functions of these as

setfilter(f, 	, {v1, . . . , vn}) = {vi | ∃v.f vi �→k true ∧ k ≤ 	 ∧ i ∈ 1 . . . n}

mapone(f, 	, vdef , v) =
{

v′ if f v �→k v′ and k ≤ 	;
vdef otherwise.

setmap(f, 	, vdef , {v1, . . . , vn}) = {mapone(f, 	, vdef , vi) | i ∈ 1 . . . n}
It is then easy to show that these constitute (since they have finite bounds) computable and well-defined
functions, and that they satisfy the criterion in Section 3.2. Requiring the programmer to provide time
bounds may be considered unpleasant; an entirely reasonable alternative (which we do not pursue here) is
to work with a language (or language fragment) that is statically guaranteed to terminate.

In fact size can be construed as special case of a more basic summation primitive:

sum : R set � R

sum(S) =
∑
s∈S

clip(s)

where clip(x) returns x clipped to the interval [−1, 1] if necessary. This clipping is required for sum to be
1-sensitive in its set argument. Otherwise, an individual set element could affect the sum by an unbounded
amount. We can then define size S = sum (setmap (λx.1) 1 0 S).

Another useful operation on sets is converting a set of sum-typed elements into two sets of the underlying
types. a primitive

setdist : (τ1 + τ2) set � τ1 set ⊗ τ2 set

with underlying function

setdist({injk1
v1, . . . , injkn

vn}) = ({vi |ki = 1}, {vi | ki = 2}).

Note carefully that it is in fact acceptable to give the output a ⊗ type. If the set input to setdist changes
by the insertion or deletion of one element, then only one of the two output sets is affected.

From this we can implement a higher-order function for splitting a set into two sets according to a
provided predicate. Specifically, we can write the program

setsplit : (τ → bool) → N → τ → τ set � τ set ⊗ τ set
setsplit = λf.λ	.λvdef .λS.setdist (setmap

(λx. if f x then inj1 x else inj2 x) 	 (inj1 vdef) S)

By using setsplit repeatedly, we can write programs that, given a set of points in R, computes a histogram,
a list of counts indicating how many points are in each of many intervals. For a simple example, suppose
our histogram bins are the intervals (−∞, 0], (0, 10], . . . , (90, 100], (100,∞).

hist′ : R → R set � (R set) list
hist′ c s = if c ≥ 101 then [s] else

let(y, n) = setsplit (λz.c ≥ z) 2 0 s in
y :: hist′ (c + 10) n

hist : R set � R list
hist s = map size (hist′ 0 s)

Note that it suffices here to use ordinary distance-insensitive arithmetic operations ≥ : R → R → bool and
+ : R → R → R. To see why these can be included, refer to the discussion in Section 4.1 of a comparable
distance-insensitive multiplication operation. We see in the next section that comparison operators like ≥
cannot be so straightforwardly generalized to be distance sensitive.
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4.6 Sorting

In this section we show how to code up a distance-sensitive sorting algorithm. Ordinarily, the basis of sorting
functions is a comparison operator such as ≥τ : τ ×τ → bool. However, we cannot take ≥R: R⊗R � bool as
a primitive, because ≥ is not 1-sensitive in either of its arguments: it has a glaring discontinuity. (Compare
the example of gtzero in Section 2.1) Although (0, ε) and (ε, 0) are nearby values in R⊗R if ε is small (they
are just 2ε apart), nonetheless ≥R returns false for one and true for the other, values of bool that are by
definition infinitely far apart.

Because of this we instead take as a primitive the conditional swap function cswp : R ⊗ R � R ⊗ R

defined in Section 2.1, which takes in a pair, and outputs the same pair, swapped if necessary so that the
first component is no larger than the second. We are therefore essentially concerned with sorting networks,
[Bat68] with cswp being the comparator. With the comparator, we can easily implement a version of insertion
sort.

insert : R � R list � R list
insert x [ ] = [x]
insert x (h :: tl) = let(a, b) = cswp (x, h) in

a :: (insert b tl)

sort : R list � R list
sort [ ] = [ ]
sort (h :: tl) = insert h (sort tl)

Of course, the execution time of this sort is Θ(n2). It is an open question whether any of the typical
Θ(n log n) sorting algorithms (merge sort, quick sort, heap sort) can be implemented in our language, but
we can implement bitonic sort [Bat68], which is Θ(n(log n)2), and we conjecture that one can implement the
log-depth (and therefore Θ(n log n) time) sorting network due to Ajtai, Komlós, and Szemerédi [AKS83].

More generally, we say a comparator for a type τ is a function cswpτ : τ ⊗ τ � τ ⊗ τ . We may ask the
question: can we derive from cswpτ comparators for types based on τ? For sum types, and the comparator
that induces the usual sum-ordering on τ + σ where every value in τ is considered to be greater than every
value of σ, the answer is yes.

cswpτ+σ : (τ + σ) ⊗ (τ + σ) � (τ + σ) ⊗ (τ + σ)
cswpτ+σ(inj1 x, inj1 y) = let(x′, y′) = cswpτ (x, y) in

(inj1 x′, inj1 y′)
cswpτ+σ(inj2 x, inj2 y) = let(x′, y′) = cswpσ(x, y) in

(inj2 x′, inj2 y′)
cswpτ+σ(inj1 x, inj2 y) = (inj2 y, inj1 x)
cswpτ+σ(inj2 x, inj1 y) = (inj2 x, inj1 y)

However, for ⊗ the answer seems to be no; lexicographic sorting of pairs is not 1-sensitive. Although
there does exist a function

cswpτ⊗σ : (τ ⊗ σ) ⊗ (τ ⊗ σ) � (τ ⊗ σ) ⊗ (τ ⊗ σ)
cswpτ⊗σ((x1, y1), (x2, y2)) =

let(x′
1, x

′
2) = cswpτ (x1, x2) in

let(y′
1, y

′
2) = cswpσ(y1, y2) in

((x′
1, y

′
1), (x

′
2, y

′
2))

it does not serve as a sensible comparator operation for any ordering on τ ⊗ σ. For consider τ = σ = R,
and observe that cswp

R⊗R
((0, 5), (10, 1)) = ((0, 1), (10, 5)), where neither (0, 1) nor (10, 5) were pairs that

occurred in the input at all.
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4.7 Finite Maps

Related to sets are finite maps from σ to τ , which we write as the type σ ⇀ τ . A finite map f from σ to τ
is an unordered set of mappings s �→ t where s : σ and t : τ , subject to the constraint that each key s has at
most one value t associated with it: if s �→ t ∈ f and s �→ t′ ∈ f , then t = t′. One can think of finite maps
as SQL databases where one column is distinguished as the primary key.

This type has essentially the same metric as the metric for sets, namely

‖D1 � D2‖ ≤ r

	 D1 ∼r D2 : σ ⇀ τ

By isolating the primary key, we can support some familiar relational algebra operations:

fmsize : (σ ⇀ τ) � R

fmfilter : (σ → τ → bool) → N → (σ ⇀ τ) � (σ ⇀ τ)
mapval : (τ1 → τ2) → N → τ2 → (σ ⇀ τ1) � (σ ⇀ τ2)
join : (σ ⇀ τ1) ⊗ (σ ⇀ τ2) � (σ ⇀ (τ1 ⊗ τ2))

The size and filter functions work similar to the corresponding operations on sets, and we can map over
values. Similar to the discussion for higher-order operations for sets, we include a time limit and (in the
case of mapval) a default value to use when the time limit is exceeded. The join operation takes two maps
(i, si)i∈I1 and (i, s′i)i∈I2 , and outputs the map (i, (s1, s2))i∈I1∩I2 . This operation is 1-sensitive in the pair of
input maps, but only because we have identified a unique primary key for both of them! For comparison,
the cartesian product × on sets — the operation that join is ordinarily derived from in relational algebra —
is not c-sensitive for any finite c, for we can see that ({x} ∪X) × Y , when x �∈ X , has ‖Y ‖ many additional
elements compared to X × Y , and ‖Y ‖ is not bounded. McSherry also noted this issue with unrestricted
joins, and deals with it in a similar way in PINQ [McS09].

Finally, we are also able to support a form of GroupBy aggregation, in the form of a primitive

group : !2(σ ⊗ τ) set � (σ ⇀ (τ set))

which takes a set S of key-value pairs (s, t), where the keys are type σ and the values of type τ , and returns
a finite map which maps values s ∈ σ to the set of t ∈ τ such that (s, t) ∈ S. This function is 2-sensitive
(thus the !2) in the set argument, because the addition or removal of a single set element may change one
element in the output map: it takes two steps to represent such a change as the removal of the old mapping,
and the insertion of the new one. For example, 	 {(a, b), (a, c), (a, d)} ∼1 {(a, b), (a, c)} : (σ ⊗ τ) set, and
	 {a �→ {b, c, d}} ∼2 {a �→ {b, c}} : σ ⇀ (τ set).

5 A Calculus for Differential Privacy

We now describe how to apply the above type system to expressing differentially private computations.
There are two ways to do this. One is to leverage the fact that our type system captures sensitivity, and
use standard results about obtaining differential privacy by adding noise to c-sensitive functions. Since
Theorem 2.2.1 guarantees that every well-typed expression b :c db 	 e : R (for a type db of databases) is a
c-sensitive function db → R, we can apply Proposition 5.1.3 below to obtain a differentially private function
by adding the appropriate amount of noise to the function’s result. But we can do better. In this section, we
show how adding a probability monad to the type theory allows us to directly capture differential privacy
within our language.

5.1 Background

First, we need a few technical preliminaries from the differential privacy literature [Dwo06].

24



The definition of differential privacy is a property of randomized functions that take as input a database,
and return a result, typically a real number.

For the sake of the current discussion, we take a database to be a set of ‘rows’, one for each user whose
privacy we mean to protect. The type of one user’s data—that is, of one row of the database—is written row.
For example, row might be the type of a single patient’s complete medical record. The type of databases
is then db = row set; we use the letter b for elements of this type. Differential privacy is parametrized
by a number ε, which controls how strong the privacy guarantee is: the smaller ε is, the more privacy is
guaranteed. It is reasonable also to think about ε as a measure rather of how much privacy can be lost by
allowing a query to take place. We assume from now on that we have fixed ε to some particular appropriate
value.

Informally, a function is differentially private if it behaves statistically similarly on similar databases,
so that any individual’s presence in the database has a statistically negligible effect. Databases b and b′

are considered similar, written b ∼ b′ if they differ by at most one row—in other words if ddb(b, b′) ≤ 1.
The standard definition [DMNS06] of differential privacy for functions from databases to real numbers is as
follows:

5.1.1 Definition: A random function q : db → R is ε-differentially private if for all S ⊆ R, and for all
databases b, b′ with b ∼1 b′, we have Pr[q(b) ∈ S] ≤ eεPr[q(b′) ∈ S].

We see that for a differentially private function, when its input database has one row added or deleted,
there can only be a very small multiplicative difference (eε) in the probability of any outcome S. For
example, suppose an individual is concerned about their data being included in a query to a hospital’s
database; perhaps that the result of that query might cause them to be denied health insurance. If we
require that query to be 0.1-differentially private (i.e., if ε is set to 0.1), then they can be reassured that the
chance of them being denied health care can only increase by about 10%. (Note that this is a 10% increase
relative to what the probability would have been without the patient’s participation in the database. If the
probability without the patient’s data being included was 5%, then including the data raises it at most to
5.5%, not to 15%!)

It is straightforward to generalize this definition to other types, by using the distance between two inputs
instead of the database similarity condition. We say:

5.1.2 Definition: A random function q : τ → σ is ε-differentially private if for all sets S of closed values of
type σ, and for all v, v′ : τ such that 	 v ∼r v′ : τ , we have Pr[q(v) ∈ S] ≤ eεrPr[q(v′) ∈ S].

For the time being, however, we continue considering only the special case of functions db → R.
One way to achieve differential privacy is via the Laplace mechanism. We suppose we have a deterministic

database query, a function f : db → R of known sensitivity, and we produce a differentially private function
by adding Laplace-distributed noise to the result of f . The Laplace distribution Lk is parametrized by k—
intuitively, a measure of the spread, or ‘amount’, of noise to be added. It has the probability density function
Pr[x] = 1

2k e−|x|/k. The Laplace distribution is symmetric and centered around zero, and its probabilities
fall off exponentially as one moves away from zero. It is a reasonable noise distribution, which is unlikely to
yield values extremely far from zero. The intended behavior of the Laplace mechanism is captured by the
following result:

5.1.3 Proposition [[DMNS06]]: Suppose f : db → R is c-sensitive. Define the random function q : db →
R by q = λb.f(b)+N , where N is a random variable distributed according to Lc/ε. Then q is ε-differentially
private.

That is, the amount of noise required to make a c-sensitive function ε-private is c/ε. Stronger privacy
requirements (smaller ε) and more sensitive functions (larger c) both require more noise.

Note that we must impose a global limit on how many queries can be asked of the same database: if
we could ask the same query over and over again, we could eventually learn the true value of f with high
probability despite the noise. If we exhaust the “privacy budget” for a given database, the database must
be destroyed. This resource-consumption aspect of differentially private queries was the initial intuition that
guided us to the use of ideas from linear logic in design of the type system.

25



5.2 The Probability Monad

Since the definition of differential privacy is probabilistic by nature, we now want to accomodate probabilistic
features in our programming language. To do this we turn to Ramsey and Pfeffer’s stochastic lambda calculus
[RP02] for inspiration, and treat finite probability distributions over a type τ in a first-class way, letting them
be the expressions that inhabit a monadic type �τ . We will see below in Section 5.3 that this suffices for
accounting for the apparently continuous probability distributions usually involved in differential privacy, for
we can easily universally quantify over all sound finite approximations to the continuous Laplace-distribution-
based noising operator.

We extend the syntax of the language as follows:

Types τ ::= · · · | P | �τ
Prob. Vectors p ::= (r1, . . . , rn)

Expressions e ::= p | return e | {e, (e1, . . . , en)} | let�x = e in e
Values v ::= p | return v | {v, (e1, . . . , en)}

Evaluation States s ::= do e | {p, (s1, . . . , sn)}
Final States f ::= doreturn v | {p, (f1, . . . , fn)}

We add a type P for probability vectors, and a monadic type �τ for probability distributions over τ .
Probability vectors p are simply lists of numbers in the interval [0, 1] that sum to 1. We single them out as
a separate syntactic concept (as opposed to mixing in probabilities with expressions) so that we can focus
on how the metric interacts with them separately from the expressions they label.

Expressions are extended by probability vectors, terms of the shape {e, (e1, . . . , en)} and by monadic
constructions. An expression {e, (e1, . . . , en)} can be thought of as a thunk that has not yet actually in-
terrogated any random number generator. Concerning monadic constructions, we add a monadic return:
the expression return e can be interpreted as the distribution that deterministically always yields e, as well
as monadic sequencing: the expression let�x = e in e′ can be interpreted as drawing a sample x from the
random computation e, and then continuing with the computation e′.

An evaluation state can be of the shape do e or of the shape {(r1, . . . , rn), (s1, . . . , sn)}, that is a ‘super-
position’ of n different states, such that the probability of obtaining si is ri. These superpositions can be
nested. For an example, the state

{(0.2, 0.8), (doreturn 1, {(0.5, 0.5), (doreturn 2,doreturn 3)})}
is a final state, which represents a 0.2 probability of yielding the value 1, and a 0.4 ( = 0.8 · 0.5) probability
of yielding either the value 2 or 3, respectively.

There are new typing and metric judgments for final states (which are analogous to values) and general
evaluation states (which are respectively analogous to expressions):

Γ 	 f : τ 	 f ∼r f ′ : τ
Γ 	 s : τ Γ 	 s ≈r s′ : τ

We add the following inference rules to the language.
Typing:

Γ � e : τ �I
∞Γ � return e : �τ

∆ � e : �τ Γ, x :∞ τ � e′ : �τ ′
�E

∆ + Γ � let�x = e in e′ : �τ ′

∆ � e : P Γ � ei : �τ (∀i)
{}

∆ + Γ � {e, (e1, . . . , en)} : �τ Γ � (r1, . . . , rn) : P
Γ � e : �τ

Γ � do e : τ

∆ � p : P Γ � si : τ (∀i)

∆ + Γ � {p, (s1, . . . , sn)} : τ

Metric:
� v ∼r v′ : τ

� return v ∼∞r return v′ : �τ
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� p ∼r p′ : P � ei ≈s e′i : �τ (∀i)

� {p, (e1, . . . , en)} ∼r+s {p′, (e′1, . . . , e
′
n)} : �τ

| ln(ri/r′i)| ≤ s (∀i)

� (r1, . . . , rn) ∼s (r′1, . . . , r
′
n) : P

� return v ∼r return v′ : �τ

� do return v ∼r do return v′ : τ

� p ∼r p′ : P � fi ∼s f ′
i : τ (∀i)

� {p, (f1, . . . , fn)} ∼r+s {p′, (f ′
1, . . . , f

′
n)} : τ

� σ ∼γ σ′ : Γ Γ, Γ0 � s0 : τ

Γ0 � σs0 ≈γΓ σ′s0 : τ

Evaluation:
e �→ e′

return e �→ return e′

e �→ e′

{e, (e1, . . . , en)} �→ {e′, (e1, . . . , en)}
e �→ e′

let�x = e in e0 �→ let�x = e′ in e0

let�x = return v in e′ �→ [v/x]e′

let�x = {p, (ei)i∈1...n} in e′ �→ {p, (let�x = ei in e′)i∈1...n}
e �→ e′

do e �→ do e′ do {p, (ei)i∈1...n} �→ {p, (do ei)i∈1...n}
∅ 
= I ⊆ 1 . . . n si �→ s′i sj = s′j = fj (∀i ∈ I, j 
∈ I)

{p, (si)i∈1...n} �→ {p, (s′i)i∈1...n}
We revisit the results shown above. The results split in a mostly predictable way into the existing statement
about expressions, and a corresponding statement about evaluation states.

5.2.1 Theorem [Progress]:

1. Suppose Γ 	 e : τ . Either e �→ e′, or e is a value.

2. Suppose Γ 	 s : τ . Either s �→ s′, or s is a final state.

Proof: By induction on the typing derivation. �

We show again that ≈ and ∼ coincide on values.

5.2.2 Lemma: Suppose 	 σ ∼γ σ′ : Γ◦.

1. If Γ 	 e : τ and σe is a value, then σ′e is a value, and 	 σe ∼γΓ σ′e : τ

2. If Γ 	 s : τ and σs is final, then σ′s is final, and 	 σs ∼γΓ σ′s : τ

Proof: By induction on the typing derivation of e or s. Some representative cases:
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Case:

Γ, x :r �τ 	 x : �τ

Γ, x :r �τ 	 do x : τ

The state s is dox. In this case, we must have σ(x) = return v for σs to be final. But σ ∼ σ′ requires
that σ′(x) = return v′ for some v′ such that return v ∼r return v′. But then do return v ∼r

doreturn v′ and we are done.

Case:
Γ 	 e : τ �I∞Γ 	 return e : �τ

∞Γ 	 do return e : τ

The state s is do return e. In this case, we must have that σe is a value for σs to be final. By induction
hypothesis, σ′e is also a value, with 	 σe ∼γΓ σ′e : τ . Hence σ(do return e) ∼∞γΓ σ′(do return e), as
required, since ∞(γΓ) = γ(∞Γ).

Case:
∆ 	 e : P Γ 	 si : τ (∀i) {}
∆ + Γ 	 {e, (s1, . . . , sn)} : τ

By assumption σe is a value, and σsi is final for all i. By repeated use of the induction hypothesis σ′e
is a value, and σ′si is final for all i, and we have 	 σe ∼γ∆ σ′e : P , and 	 σsi ∼γΓ σ′si : τ for all i.
Therefore we have that 	 σ{e, (s1, . . . , sn)} ∼γ(∆+Γ) σ′{e, (s1, . . . , sn)} : τ , as required.

�

5.2.3 Corollary:

1. If 	 v ≈r v′ : τ , then 	 v ∼r v′ : τ .

2. If 	 f ≈r f ′ : τ , then 	 f ∼r f ′ : τ .

Proof: By inversion on the rule defining ≈, we know f, f ′, r must arise as f = σs0 and f ′ = σ′s0 and
r = γΓ so that

	 σ ∼γ σ′ : Γ◦ Γ 	 s0 : τ

	 σs0 ≈γΓ σ′s0 : τ

By the preceding lemma, we have 	 σs0 ∼γΓ σ′s0 : τ , as required. �

5.2.4 Lemma [Substitution into ≈]: The following rules are admissible:

∆ 	 e ≈r e′ : τ ∆0, x :s τ 	 e0 ≈r0 e′0 : τ0

∆0 + s∆ 	 [e/x]e0 ≈r0+rs [e′/x]e′0 : τ0

∆ 	 s ≈r s′ : τ ∆0, x :s τ 	 s0 ≈r0 s′0 : τ0

∆0 + s∆ 	 [s/x]s0 ≈r0+rs [s′/x]s′0 : τ0

Proof: Essentially the same proof as before. �

5.2.5 Lemma: Suppose 	 σ ∼γ σ′ : Γ.

1. If Γ 	 e : τ and σe �→ ef , then ∃e′f . σ′e �→ e′f and 	 ef ≈γΓ e′f : τ .

2. If Γ 	 s : τ and σs �→ sf , then ∃s′f . σ′s �→ s′f and 	 sf ≈γΓ s′f : τ .
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Proof: By induction on the typing derivation, with further case analysis on the step taken.

Case:
∆ 	 eL : �τ1 Γ, x :∞ τ1 	 eR : �τ2 �E

∆ + Γ 	 let�x = eL in eR : �τ2

Subcase:
σeL �→ ef

let�x = σeL inσeR �→ let�x = ef inσeR

By induction hypothesis, σ′e �→ e′f with 	 ef ≈γ∆ e′f : �τ1. We therefore find that

σ′eL �→ e′f
let�x = σeL inσ′eR �→ let�x = e′f inσ′eR

By the definition of ≈ on the well-typedness of eR, we know

y :∞ τ1 	 (let�x = y inσeR) ≈γΓ (let�x = y inσ′eR)

and so substituting into this the fact that 	 ef ≈γ∆ e′f : �τ1 yields

	 (let�x = ef inσeR) ≈γ(∆+Γ) (let�x = e′f inσ′eR)

as required.

Subcase:

let�x = return v inσeR �→ [v/x]σeR

Here we know that σeL is a value return v. By Lemma 5.2.2, σ′eL must be of the form return v′,
with 	 return v ∼γ∆ return v′ : �τ1. By inversion, γ∆ = ∞r, and 	 v ∼r v′ : τ1. We can extend σ
and σ′ to the substitutions [v/x]σ and [v′/x]σ′ and note that

	 σ[v/x] ∼(γ,x:r) σ′[v′/x] : Γ◦, x : τ1

We can see directly that

let�x = return v′ inσ′eR �→ [v′/x]σ′eR

and furthermore that
	 [v/x]σeR ≈∞r+γΓ [v′/x]σ′eR

which is what we need, since ∞r = γ∆.

Subcase:

let�x = {p, (ei)i∈1...n} inσeR �→ {p, (let�x = ei inσeR)i∈1...n}
Here we know that σeL is a value {p, (ei)i∈1...n}. By Lemma 5.2.2, σ′eL must be of the form
{p′, (e′i)i∈1...n}, with

	 p ∼r p′ : P 	 ei ≈s e′i : �τ1 (∀i)

	 {p, (e1, . . . , en)} ∼r+s {p′, (e′1, . . . , e′n)} : �τ1

and r + s = γ∆.

We can easily check that the other expression takes a step, namely

let�x = {p′, (e′i)i∈1...n} inσ′eR �→ {p′, (let�x = e′i inσ′eR)i∈1...n}
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and so we must show that

� {p, (let�x = ei inσeR)i∈1...n} ≈ {p′, (let�x = e′i inσ′eR)i∈1...n} : �τ2

This can be done by fist observing that

y : P , z1, . . . , zn : �τ1 	 {y, (let�x = zi inσeR)i∈1...n}
≈ {y, (let�x = zi inσ′eR)i∈1...n} : �τ2

and then carrying out repeated substitutions.

�

The central metric preservation theorem is now

5.2.6 Theorem [Metric Preservation]:

1. If 	 e ≈r e′ : τ and e �→ ef , then ∃e′f . e′ �→ e′f and 	 ef ≈r e′f : τ .

2. If 	 s ≈r s′ : τ and s �→ sf , then ∃s′f . s′ �→ s′f and 	 sf ≈r s′f : τ .

Proof: By appeal to the previous lemma. �

The metric on probability distributions was carefully chosen so that the above theorem implies that the
definition of differential privacy can be encoded directly in the type system. We first formally define the
probability Prf [v] that a final state f yields a value v. It is defined recursively on f :

Prdo return v′ [v] =
{

1 if v = v′;
0 otherwise.

Pr{(p1,...,pn),(f1,...,fn)}[v] =
n∑

i=1

pi Prfi [v]

The metric on final states gives corresponds to the relation on probability distributions involved in the
definition of differential privacy.

5.2.7 Lemma: Let 	 sf : τ and 	 s′f : τ be two closed final states such that sf ∼r s′f : τ . Then for every
value 	 v : τ :

Prsf
[v] ≤ erPrs′

f
[v]

Proof: By induction on the structure of sf with further case analysis on sf ∼r s′f : τ .

Case sf = do return v′.

By definition of sf ∼r s′f : τ we must have s′f = do return v′′ with v′ = v′′ and r = 0. So the
conclusion follows easily.

Case sf = {(p1, . . . , pn), (f1, . . . , fn)}.
By definition of sf ∼r s′f : τ we must have s′f = {(p′1, . . . , p′n), (f ′

1, . . . , f
′
n)} with r = s + t where

(p1, . . . , pn) ∼s (p′1, . . . , p′n) and ∀i : fi ∼t f ′
i : τi. The former implies that ∀j : | ln(pj/p′j)| ≤ s, while the

latter by induction hypothesis implies that for every i and for every value 	 v : τi: Prsfi
[v] ≤ etPrsf′

i

[v].
So, we have

Prsf
[v] =

n∑
i=1

pi Prfi [v] ≤
n∑

i=1

pi etPrsf′
i
[v] ≤

n∑
i=1

esp′i etPrsf′
i
[v] ≤ es+t

n∑
i=1

p′i Prsf′
i
[v] = es+t Prs′

f
[v]

from which the conclusion follows.

�
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Finally, we can show that the definition of differential privacy is encoded in the type system.

5.2.8 Corollary: The execution of any closed program e such that

	 e : !ετ � �σ

is an ε-differentially private function from τ to σ. That is, for all closed vlaues v, v′ : τ such that 	 v ∼r v′ : τ ,
and all closed values w : σ, we have that if do(e v) �→ sf and do(e v) �→ s′f :

Prsf
[w] ≤ erεPrs′

f
[w]

Proof: By using the fact that 	 [v/x] ∼[r/x] [v′/x] : (x : τ) we have that 	 [v/x]do(e x) ≈rε [v′/x]do(e x) :
σ. By Metric Preservation Theorem 5.2.6 we obtain sf ≈rε s′f : τ , and so by Corollary 5.2.3 and Lemma
5.2.7 we can conclude. �

The above corollary shows that in order to ensure that the execution of a program e corresponds to an
ε-differentially private random function from values in τ to values in σ, it is sufficient to check that the
program e is typable as:

	 e : !ετ � �σ

So, well typed programs cannot disclose information about individuals.

5.3 Finite Approximations and the Laplace Primitive

In order to be able to program differentially private algorithms as described in Proposition 5.1.3 we need
now a new primitive adding noise distributed according to Laplace distribution. In particular it is sufficient
to add a primitive computing the function Lap adding noise distributed according to L1. Since however such
a primitive is not in general computable, we will show here that is sound to add as primitive any of its finite
approximations.

Let N = (ni)i∈1...n be a finite sequence of disjoint intervals whose union is R. Let V = (vi)i∈1...n be
a finite sequence of points in R, such that vi ∈ ni for every i. For example, N could be the intervals
(−∞, 0), [0, 1), [1,∞) and V could be −1, 1/2, 1. We can, however, choose N to be as refined as we want
— for instance, having one interval surround every number representable in IEEE floating point — and the
result below will still hold.

We then define a primitive LapNV : R � �R with the underlying value function3

LapNV (v) = {(p1, . . . , pn), (v1, . . . , vn)}
where

pi =
∫

Ni

ev−xdx

To satisfy the metric preservation theorem, we need to establish that we can get from 	 v ∼k v′ : R to
	 LapNV (v) ∼k LapNV (v′) : �R. In other words, we must prove the following lemma:

5.3.1 Lemma: If |v − v′| ≤ k, then∣∣∣∣ln
(∫

Ni

ev−xdx

/ ∫
Ni

ev′−xdx

)∣∣∣∣ ≤ k

3Technically, in order to respect the typing, the application of the LapNV primitive to a value v must yield an expression
{(p1, . . . , pn), (return v1, . . . , return vn)}.
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Proof: To say that |a| ≤ k (for positive k) is the same as saying that both a ≤ k and −a ≤ k. Our
assumption is therefore tantamount to v − v′ ≤ k and v′ − v ≤ k. Very easily from these we can get both of

ev−x ≤ ekev′−x

ev′−x ≤ ekev−x

for every x. Integrating both sides of both inequalities over the interval Ni yields∫
Ni

ev−xdx ≤ ek

∫
Ni

ev′−xdx

∫
Ni

ev′−xdx ≤ ek

∫
Ni

ev−xdx

which, by rearranging, yields both of

ln
(∫

Ni

ev−xdx

/ ∫
Ni

ev′−xdx

)
≤ k

ln
(∫

Ni

ev′−xdx

/ ∫
Ni

ev−xdx

)
≤ k

from which follows the required conclusion. �

We conclude that it is sound to include any finite approximation to the Lap primitive, and leave it up to
potential language implementers to determine the most appropriate level of accuracy.

6 Differential Privacy Examples

Easy examples of ε-differentially private computations come from applying the Laplace mechanism at the
end of a deterministic computation. We want to have a function

add noise :!εR � �R

which adds Laplace noise L1/ε to its input. According to Proposition 5.1.3, this is exactly the right amount
of noise to add to a 1-sensitive function to make it ε-differentially private. In order to program (an approxi-
mation of) the add noise function, we can fix N and V and use the LapNV : R � �R primitive introduced
in the previous section. So, we have

add noise = λx. let �y = LapNV (scaleεx) in return (times(y, !ε))

For a concrete example, suppose that we have a function age : row → int. We can then straightforwardly
implement the over-40 count query from the introduction.

over 40 : row → bool.
over 40 r = age r > 40.

count query : !ε(row set) � �R

count query b = let !x = b in add noise !(setfilter over 40 x)

Notice that we are able to use convenient higher-order functional programming idioms without any difficulty.
The function over 40 is also an example of how ‘ordinary programming’ can safely be mixed in with distance-
sensitive programs. Since the type of over 40 uses → rather than �, it makes no promise about sensitivity,
and it is able to use ‘discontinuous’ operations like numeric comparison >.
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Other deterministic queries can be turned into differentially private functions in a similar way. For
example, consider the histogram function hist : R set � R list from Section 4.5. We can first of all write the
following program.

hist query′ : !ε(row set) � (�R) list
hist query′ b = let!b′ = b inmap add noise (ldistribute !(hist (setmap age b′))

This takes a database, finds the age of every individual, and computes a histogram of the ages. Then we
prescribe that each item in the output list — every bucket in the histogram — should be independently
noised. This yields a list of random computations, while what we ultimately want is a random computation
returning a list. But we can use monadic sequencing to get exactly this:

seq : (�R) list � �(R list)
seq [] = return []
seq (h :: tl) = let�h′ = h in

let�tl′ = seq tl in
return(h′ :: tl′)

hist query : !ε(row set) � �(R list)
hist query b = seq (hist query′ b)

In the differential privacy literature, there are explicit definitions of both the meaning of sensitivity and the
process of safely adding enough noise to lists of real numbers [DMNS06]. By contrast, we have shown how
to derive these concepts from the primitive metric type R and the type operators µ, 1, +, ⊗, and �.

We can also derive more complex combinators on differentially private computations, merely by program-
ming with the monad. We consider first a simple version4 of McSherry’s principle of sequential composition
[McS09].

6.1 Lemma [Sequential Composition]: Let f1 and f2 be two ε-differentially private queries, where f2 is
allowed to depend on the output of f1. Then the result of performing both queries is 2ε-differentially private.

In short, the privacy losses of consecutive queries are added together. This principle can be embodied as the
following higher-order function:

sc : (!ετ1 � �τ2) → (!ετ1 � τ2 → �τ3) → (!2ετ1 � �τ3)
sc f1 f2 t1 = let !t′1 = t1 in let�t2 = f1 !t′1 in f2 !t′1 t2

Its arguments are the functions f1 and f2, which are both ε-differentially private in a data source of type
τ1 (and f2 additionally has unrestricted access to the τ2 result of f1), and returns a 2ε-differentially private
computation.

McSherry also identifies a principle of parallel composition:

6.2 Lemma [Parallel Composition]: Let f1 and f2 be two ε-differentially private queries, which depend
on disjoint data. Then the result of performing both queries is ε-differentially private.

This can be coded up by interpreting “disjoint” with ⊗.

pc : (!ετ1 � �τ2) → (!εσ1 � �σ2) → !ε(τ1 ⊗ σ1) � �(τ2 ⊗ σ2)
pc f g b = let !x = b in let(t, s) = x let�t′ = f !t in let�s′ = g !s in return(t′, s′)

In McSherry’s work, what is literally meant by “disjoint” is disjoint subsets of a database construed as a
set of records. This is also possible to treat in our setting, since we have already seen that setsplit returns a
⊗-pair of two sets.

4McSherry actually states a stronger principle, where there are k different queries, all of different privacy levels. This can
also be implemented in our language.
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means

Figure 5: k-Means Output

For a final, slightly more complex example, let us consider the privacy-preserving implementation of
k-means by Blum et al. [BDMN05]. Recall that k-means is a simple clustering algorithm, which works as
follows. We assume we have a large set of data points in some space (say R

n), and we want to find k ‘centers’
around which they cluster. We initialize k provisional ‘centers’ to random points in the space, and iteratively
try to improve these guesses. One iteration consists of grouping each data point with the center it is closest
to, then taking the next round’s set of k centers to be the mean of each group.

We sketch how this program can be implemented, taking data points to be of the type pt = R ⊗ R. The
following helper functions are used:

assign : pt list → pt set � (pt ⊗ int) set
partition : (pt ⊗ int) set � pt set list
totx, toty : !ε(pt set) � !εR
size′ : !ε(pt set) � !εR
zip : τ list → σ list → (τ ⊗ σ) list

These can be written with the primitives we have described; assign takes a list of centers and the dataset,
and returns a version of the dataset where each point is labelled by the index of the center it’s closest to.
Then partition divides this up into a list of sets, using setsplit. The functions totx and toty compute the sum
of the first and second coordinates, respectively, of each point in a set. This can be accomplished with sum.
Finally, zip is the usual zipping operation that combines two lists into a list of pairs. With these, we can
write a function that performs one iteration of private k-means:

iterate : !3εpt set � R list → �(R list)
iterate b ms = let !b′ = b in

let
b′′ = ldistribute !(partition (assign ms b′))
tx = map (add noise ◦ totx) b′′

ty = map (add noise ◦ toty) b′′

t = map (add noise ◦ size′) b′′

stats = zip (zip (tx, ty), t)
in

seq (map avg stats)

It works by asking for noisy sums of the x-coordinate total, y-coordinate total, and total population of each
cluster. These data are then combined via the function avg:

avg : ((�R ⊗ �R) ⊗ �R) � �(R ⊗ R)
avg ((x, y), t) = let�x′ = x in let�y′ = y in

let�t′ = t in return (x′/t′, y′/t′)
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We can read off from the type that one iteration of k-means is 3ε-differentially private. This type arises from
the 3-way replication of the variable b′′. We can use monadic sequencing to do more than one iteration:

two iters : !6εpt set � R list → �(R list)
two iters b ms = let !b′ = b in iterate !b′ (iterate !b′ ms)

This function is 6ε-differentially private. Figure 5 shows the result of three independent runs of this code,
with k = 2, 6ε = 0.05, and 12,500 points of synthetic data. We see that it usually manages to come reasonably
close to the true center of the two clusters. We have also developed appropriate additional primitives and
programming techniques to make it possible (as one would certainly hope!) to choose the number of iterations
not statically but at runtime, but space reasons prevent us from discussing them here.

7 Related Work

The seminal paper on differential privacy is [DMNS06]; it introduces the fundamental definition and the
Laplace mechanism. More general mechanisms for directly noising types other than R also exist, such as the
exponential mechanism [MT07], and techniques have been developed to reduce the amount of noise required
for repeated queries, such as the median mechanism [RR10]. Dwork [Dwo08] gives a useful survey of recent
results.

Girard’s linear logic [Gir87] was a turning point in a long and fruitful history of investigation of sub-
structural logics, which lack structural properties such as unrestricted weakening and contraction. A key
feature of linear logic compared to earlier substructural logics [Lam58] is its ! operator, which bridges linear
and ordinary reasoning. Our type system takes its structure from the affine variant of linear logic (also
related to Ketonen’s Direct Logic [Ket84]), where weakening is permitted. The idea of counting, as we do,
multiple uses of the same resource was explored by Wright [WBF93], but only integral numbers of uses were
considered.

The study of database privacy and statistical databases more generally has a long history. Recent
work includes Dalvi, Ré, and Suciu’s study of probabilistic database management systems [DRS09], and
Machanavajjhala et al.’s comparison of different notions of privacy with respect to real-world census data
[MKA+08].

Quantitative Information Flow [Low02, ME08] is, like our work, concerned with how much one piece
of a program can affect another, but measures this in terms of how many bits of entropy leak during one
execution. Provenance analysis [BKWC01] in databases tracks the input data actually used to compute
a query’s output, and is also capable of detecting that the same piece of data was used multiple times to
produce a given answer [GKT07]. Chaudhuri et al. [CGL10] also study automatic program analyses that
establish continuity (in the traditional topological sense) of numerical programs. Our approach differs in two
important ways. First, we consider the stronger property of c-sensitivity, which is essential for differential
privacy applications. Second, we achieve our results with a logically motivated type system, rather than a
program analysis.

8 Conclusion

We have presented a typed functional programming language that guarantees differential privacy. It is
expressive enough to encode examples both from the differential privacy community and from functional
programming practice. Its type system shows how differential privacy arises conceptually from the combi-
nation of sensitivity analysis and monadic encapsulation of random computations.

There remains a rich frontier of differentially private mechanisms and algorithms that are known, but
which are described and proven correct individually. We expect that the exponential mechanism should be
easy to incorporate into our language, as a higher-order primitive which directly converts McSherry and
Talwar’s notion of quality functions [MT07] into probability distributions. The median mechanism, whose
analysis is considerably more complicated, is likely to be more of a challenge. The private combinatorial
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optimization algorithms developed by Gupta et al. [GLM+09] use different definitions of differential privacy
which have an additive error term; we conjecture this could be captured by varying the notion of sensitivity
to include additive slack. We believe that streaming private counter of Chan et al. [CSS10] admits an easy
implementation by coding up stream types in the usual way. We hope to show in future work how these,
and other algorithms can be programmed in a uniform, privacy-safe language.

9 *
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